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a b s t r a c t

We investigate the evolution of phase space close to complex unstable periodic orbits in two galactic
type potentials. They represent characteristic morphological types of disc galaxies, namely barred
and normal (non-barred) spiral galaxies. These potentials are known for providing building blocks
to support observed features such as the peanut, or X-shaped bulge, in the former case and the spiral
arms in the latter. We investigate the possibility that these structures are reinforced, apart by regular
orbits, also by orbits in the vicinity of complex unstable periodic orbits. We examine the evolution of
the phase space structure in the immediate neighbourhood of the periodic orbits in cases where the
stability of a family presents a successive transition from stability to complex instability and then to
stability again, as energy increases. We find that we have a gradual reshaping of invariant structures
close to the transition points and we trace this evolution in both models. We conclude that for time
scales significant for the dynamics of galaxies, there are weakly chaotic orbits associated with complex
unstable periodic orbits, which should be considered as structure-supporting, since they reinforce the
morphological features we study.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Complex instability is a particular type of orbital instability
hat appears in autonomous Hamiltonian systems of three or
ore degrees of freedom (for a definition see Section 2). In
alactic dynamics it characterizes periodic orbits of many three
imensional (hereafter 3D) models in a large volume of their pa-
ameter space [1–16]. However, considerable insight in the role of
omplex instability for the dynamics of Hamiltonian systems has
een gained by works on several other kinds of potentials [17–
9] or 4-dimensional symplectic mappings [20–25]. These results
ave also been used for understanding the behaviour of stellar
rbits in galactic type potentials.
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A main problem in galactic dynamics is to find the orbital
building blocks that can reinforce observed morphological fea-
tures in galaxies. In that respect, finding stable periodic orbits,
which attract around them quasi-periodic orbits that remain
in their neighbourhood, is essential for understanding the en-
hancement of bars and spiral arms in 3D autonomous, rotating,
Hamiltonian systems representing disc galaxies. Nevertheless, the
quasi-periodic orbits must provide the appropriate shapes that
match the morphology of the structure we study.

A particular structure can also be supported during a certain
time by orbits that remain confined during this period in a spe-
cific volume of the phase space. Such orbits are called sticky
and have been mainly studied in two-dimensional systems (see
[26], and references therein). Much less work has been done on
stickiness in 3D models and especially in the neighbourhood of
complex unstable periodic orbits. The present study investigates
whether we can find orbits that remain confined close to periodic
orbits characterized by this type of instability.

Complex instability has been considered as an abrupt tran-
sition to chaos, since its appearance is not associated with the
introduction of new families of periodic orbits in the system. In
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ny case, studies of the phase space in the neighbourhood of com-
lex unstable periodic orbits have shown that the transition from
tability to complex instability gives rise to bifurcating invariant
tructures in Poincaré sections of 3D autonomous Hamiltonian
ystems [4,14,15,18,27], as well as in 4D symplectic maps [20,23,
8].
A question that arises, is if the degree of chaoticity of orbits

lose to a complex unstable periodic orbit can be associated with
ome quantity that can indicate the presence or absence of in-
ariant forms in the corresponding phase space region. From the
nalysis leading to the stability of the periodic orbits, the obvious
andidate is the discriminant ∆ (for the definition see Section 2).
ne of the goals of the present paper is to investigate its relation
ith chaoticity in phase space, as quantified by chaos indicators

ike the GALI2 index, introduced by Skokos et al. [29]. However,
he ultimate goal of the study is to explore whether or not one can
ind close to complex unstable periodic orbits building blocks for
upporting structures like the two main morphological features
f disc galaxies, which are the bars and the spiral arms.
The paper is structured as follows: In Section 2 we present

he various kinds of instabilities of periodic orbits in 3D systems.
n Section 3 we describe the two dynamical models, which we
ave used in our study, namely the Ferrers bar and the PERLAS
otential. In Section 4 we give definitions associated with the
ALI2 indicator. Our numerical results are presented in Section 5.
inally we enumerate our conclusions in Section 6.

. Orbital instabilities in 3D systems

In galactic disc dynamics we deal with disc-like potentials,
otating around an axis perpendicular to the disc, at the centre
f the system. In such a case, our Hamiltonian can be described
n Cartesian coordinates (x, y, z) as:

H =
1
2
(p2x + p2y + p2z ) + V (x, y, z) − Ωs(xpy − ypx), (1)

here V (x, y, z) is the potential of the model, Ωs the rotational
elocity of the system (pattern speed), which is constant and
x, py, and pz are the canonically conjugate momenta. The axis
f rotation is the z axis.
We will refer to the conserved numerical value of the Hamil-

onian, EJ , as the Jacobi constant or, more loosely, as the ‘energy’.
The equations of motion corresponding to Eq. (1) are:

ẋ = px + Ωsy, ẏ = py − Ωsx, ż = pz

ṗx = −
∂V
∂x

+ Ωspy, ṗy = −
∂V
∂y

− Ωspx, ṗz = −
∂V
∂z

. (2)

The space of section in the case of a 3D system is 4D. The
quations of motion for a given EJ are solved numerically, starting
ith initial conditions (x0, z0, px0 , pz0 ) in the plane y = 0 (with
he py0 value determined by the given EJ value) and then by
onsidering successive upwards (py > 0) intersection with this
plane.

The exact initial conditions for the periodic orbit are calculated
using a Newton iterative method. A periodic orbit is found when
the initial and final coordinates coincide with an accuracy of at
least 10−10. The integration scheme used was a 4th order Runge–
Kutta algorithm and in some cases a Runge–Kutta Fehlberg 7–8th
order scheme, securing a relative error in the energy less than
10−14.

Resonances play a crucial role in the dynamics of rotating, 3D,
galactic potentials. These are resonances between the epicyclic
and the rotational frequencies of the stellar orbits, in the rotating
with Ωs frame of reference (radial resonances), while we have
vertical frequencies as well, in which, instead of the epicyclic, we

consider the vertical frequency. A special case is the corotation

2

resonance, where the angular velocity of the stars is equal to
the pattern speed, namely Ω(r) = Ωs (for definitions see e.g.
[30]). For the needs of the present study we keep in mind that
at the resonances the stability of a family of periodic orbits,
i.e. of periodic solutions of the equations of motion (2), may
change [31].

When a periodic orbit is found, it can be characterized as
stable or unstable by calculating its linear stability. This is done
by following a method introduced by Broucke [32] and Had-
jidemetriou [33]. Contopoulos and Magnenat [5] have distin-
guished three kinds of instability for the unstable periodic orbits.
The method is briefly described below, where we also give the
definitions of the instabilities.

The first step is to consider a small deviation from the initial
conditions of the periodic orbit and then to integrate the per-
turbed orbit again up to the next upward intersection. In this way
a 4D Poincaré map, T : R4

→ R4, is established, relating the points
of initial with the final deviation. In vector form this relation can
be written as: ξ⃗ = M ξ⃗0, where ξ⃗ is the final deviation, ξ⃗0 is the
initial deviation and M a 4 × 4 matrix, called the monodromy
matrix. The characteristic equation of this matrix is written in the
form λ4

+αλ3
+βλ2

+αλ+1 = 0. Its solutions (λi, i = 1, 2, 3, 4),
obey the relations λ1 λ2 = 1 and λ3 λ4 = 1 and we can write for
each pair:

λi, 1/λi =
1
2

[
−bi ± (b2i − 4)

1
2

]
, (3)

where bi =
1
2 (α ± ∆1/2) and

= α2
− 4(β − 2). (4)

Stability or Instability of the periodic orbit is expressed by means
of the quantities b1, b2 and ∆. The quantities b1 and b2 are called
the stability indices. One of them is associated with radial and
the other one with vertical perturbations. We distinguish the
following four cases:

(1) If ∆ > 0, |b1| < 2 and |b2| < 2, the 4 eigenvalues
λi(i = 1, 2, 3, 4) are on the unit circle and the periodic orbit
is called ‘stable’, (S).

(2) If ∆ > 0, and |b1| > 2, |b2| < 2, or |b2| > 2, |b1| < 2, two
eigenvalues are on the real axis and two on the unit circle,
and the periodic orbit is called ‘simple unstable’, (U).

(3) If ∆ > 0, |b1| > 2, and |b2| > 2, all four eigenvalues
are on the real axis, and the periodic orbit is called ‘double
unstable’, (DU).

(4) Finally, ∆ < 0 means that all four eigenvalues are complex
numbers but off the unit circle. The orbit is characterized
then as ‘‘complex unstable’’, (∆).

For a general discussion of the kinds of instability encountered
n Hamiltonian systems of N degrees of freedom the reader may
efer to Skokos [34].

As one of the parameters of our model varies (in this work
J ), case (4) may appear at an S → ∆ or at a DU → ∆ transition.
hen the periodic orbit is initially stable, we have at a critical

J , a pairwise collision of eigenvalues on two conjugate points of
he unit circle. Then, Krein–Moser theorem (see e.g. [35], p.298)
ecides if the eigenvalues will remain on the unit circle after
he collision, or if they will move out of the unit circle, into the
omplex plane, forming a complex quadruplet. In the former case
he orbits of the family will continue being stable and in the
atter they will become complex unstable. The transition from
tability to complex instability is also known as Hamiltonian Hopf
ifurcation [36].
At complex instability, unlike in the two other kinds of insta-

ilities, we do not have introduction of new families of periodic
rbits in the system. In the case of a S → U transition, the stability
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f the parent family is inherited to a bifurcated one. Thus, for
alues of the parameter beyond the critical value for which the
tability of the family changes, new tori of quasi-periodic orbits
ill appear in the phase space of the system, belonging to the
ew stable families. The U → DU transition occurs to a later
tage and can be considered as a transition from order to chaos
n two steps (S → U → DU). A bifurcated family at the U →

U transition will be simple unstable. At a DU → ∆ transition
o new families are introduced in the system. We note that in
he latter case the neighbourhood of the parent family is already
haotic and no new invariant structures are encountered in phase
pace [15].

. The dynamical models

Complex instability appears frequently, as energy varies, in the
volution of the stability of the main 3D families of periodic orbits
hat bifurcate from the central, planar family of periodic orbits
1, and make up the ‘‘x1-tree’’ [37]. The most important of these
amilies is x1v1, which bifurcates from x1, usually as stable (but
ee also [38]), at the vertical 2:1 resonance. The existence of the
1-tree families is not associated with a particular model, but it
s an intrinsic property of any 3D rotating potential, in which
he resonances can be defined. They offer the building blocks
or supporting the main structures encountered in disc galaxies,
amely the bar (see e.g. [39]) and the spirals [30,40].

.1. Ferrers bar

The first potential we used, refers to a mass distribution rep-
esenting a galactic bar. The 3D bar is rotating around its short
axis. The x axis is the intermediate and the y axis the long
ne. The system is rotating with the pattern speed of the bar Ωb,
.e. Ωs = Ωb. The bar is embedded in a 3D disc, while in the centre
f the system exists also a spheroidal bulge. Thus, this galactic
odel consists of three components, a disc, a bulge and a bar.
The disc is represented by a Miyamoto potential [41]:

D = −
GMD√

x2 + y2 + (A +
√
B2 + z2)2

, (5)

here MD is the total mass of the disc, A and B are the horizontal
nd vertical scale lengths, and G is the gravitational constant.
The bulge is modelled by a Plummer sphere with potential:

S = −
GMS√

x2 + y2 + z2 + ϵ2
s

, (6)

where ϵs is the scale length of the bulge and MS is its total mass.
The third component of the potential is a triaxial Ferrers bar,

whose density ρ is:

ρ =

⎧⎪⎨⎪⎩
105MB

32πabc
(1 − m2)2 for m ≤ 1

0 for m > 1

, (7)

where

m2
=

y2

a2
+

x2

b2
+

z2

c2
, a > b > c, (8)

a, b, c are the semi-axes and MB is the mass of the bar component.
he corresponding potential ΦB and the forces are given in a
losed form in [3]1. We use for the Miyamoto disc A = 3 and B =

, and for the Ferrers bar axes we set a:b:c = 6:1.5:0.6, as in [3]

1 We made use of the offer of Olle and Pfenniger [14] for free access to the
lectronic version of the potential and forces routines.
3

Table 1
The parameters of the Ferrers bar model: G is the gravitational constant, MD ,
MB , MS are the masses of the disc, the bar and the bulge respectively, ϵs is
the scale length of the bulge, Ωb is the pattern speed of the bar, EJ (v-IILR) is
he value of the Jacobi constant for the vertical 2:1 resonance and Rc is the
corotation radius.
GMD GMB GMS ϵs Ωb EJ (v-ILR) Rc

0.87 0.05 0.08 0.4 0.054 −0.3028 6.38

and in many previous works of the authors using this potential.
The masses of the three components satisfy G(MD+MS +MB) = 1.
he length unit is taken as 1 kpc, the time unit as 1 Myr and the
ass unit as 2×1011M⊙. In Table 1 we give the parameters of our
odel. They have been chosen so, that for this model we have a

ypical alternation of stable and complex unstable regions in the
1v1 family, as the energy varies.

.2. PERLAS spirals

The second potential we used, refers to a bisymmetric loga-
ithmic spiral as those observed in grand design spiral galaxies.
pirals are, besides the bars, the second feature that characterizes
he morphology of disc galaxies. They may appear together with
bar (barred-spiral galaxies) or without a bar (normal spiral

alaxies). The spiral potential is embedded in an axisymmetric
ackground that has three parts. The first two parts are repre-
ented by the same general models we used for the axisymmetric
omponents of the bar model. Namely, we have first a central
ass component, ΦS , representing the bulge, given again by
q. (6), with mass MS and scale length ϵs. In addition, we consider
3D Miyamoto disc (Eq. (5)) with mass MD and scale lengths A,
.
The third component of the axisymmetric part of the spiral

otential refers to a massive halo, represented by a halo potential
roposed by Allen and Santillan [42], which at radius r is given
y

H (r) = −

(
M(r)
r

)
−

(
MH

1.02aH

)
×

[
−

1.02
1 + (r/aH )1.02

+ ln(1 + (r/aH )1.02)
]100

r
,

here

(r) =
MH (r/aH )2.02

1 + (r/aH )1.02
. (9)

M(r) has mass units, MH is the mass of the halo, and aH is a scale
length.

The perturbation in this case has the form of a three dimen-
sional spiral component, for which we use the PERLAS (sPiral
arms potEntial foRmed by obLAte Spheroids) potential [43]. The
spiral pattern has two arms and is shaped by a density dis-
tribution formed by individual, inhomogeneous, oblate Schmidt
spheroids [44]. These spheroids are superposed along a loga-
rithmic spiral locus of constant pitch angle i. The spirals are
considered to be trailing and rotating clockwise.

The Schmidt spheroids have constant semi-axes ratio, while
their density falls linearly outwards, starting from their centres
on the spiral locus. The separation among the centres of the
spheroids is 0.5 kpc, their total width 2 kpc and their total height
1 kpc. The spiral arms start at 2.03 kpc and end at 12.9 kpc. These
distances correspond to the radial 2:1 resonance and to 1.5 times
the corotation radius respectively. The density along the loci of
the spiral arms falls exponentially, as the one of the disc does.
For a detailed presentation of the PERLAS potential see e.g. [45].
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The total potential is the sum of the four terms: Φ = ΦS +

D+ΦH+ΦSP , the three first of which compose the axisymmetric
art and ΦSP is the PERLAS spiral potential. The parameters for
ll these components used in the particular model of the present
aper are summarized in Table 2.
The pattern speed Ωp = −20 km s−1 kpc−1 defines the

angular velocity of the system in the clockwise sense, while the
pitch angle of the logarithmic spirals, i = 25◦, corresponds to an
open pattern, typical of galaxies of galactic type Sc. The model
has a maximum rotational velocity of 170 km s−1, that is typical
for a galaxy of morphological type Sc [46]. The amplitude of the
perturbation is determined by the ratio MSP/MD, where MSP is the
mass of the spiral and MD the mass of the disc component [40].
This set up has been chosen for the needs of the present paper,
since the stability of the basic 3D family x1v1, which supports
the spiral arms [40], has successive stable and complex unstable
parts, as EJ varies. We note that the scaling of units in the two
models is not the same, so the numerical values referring to the
Ferrers bar and the PERLAS model are different.

4. The GALI2 indicator

In order to quantify the chaoticity of the orbits we consider in
the present study, we use the standard chaos indicator GALI2 [29].

The GALI2 index is given by the norm of the wedge product
of two normalized to unity deviation vectors ŵ1(t) and ŵ2(t):
GALI2(t) = |ŵ1(t) ∧ ŵ2(t)|. The initial coordinates of the de-
viations vectors are chosen randomly, and the two vectors are
orthonormalized by using the Gram–Schmidt process at the be-
ginning of the integration. This sets the initial value of the index
to GALI2(0) = 1. Thus, in order to evaluate GALI2 we integrate
the equations of motion and the variational equations for two
deviation vectors simultaneously. The GALI2 index behaves as
follows (see [47], and references therein):

• For chaotic orbits it falls exponentially to zero as: GALI2(t) ∝

exp (−(λ1 − λ2)t), where λ1 and λ2 are the two largest Lya-
punov exponents (for definitions and for the computation of
the Lyapunov exponents see e.g: [48,49]).

• For regular orbits it oscillates around a positive value across
the integration: GALI2(t) ∝ constant .

• In the case of sticky orbits we observe a transition from
practically constant GALI2 values, which correspond to the
seemingly quasi-periodic epoch of the orbit, to an exponen-
tial decay to zero, which indicates the orbit’s transition to
chaoticity.

GALI2 has been used to characterize the chaoticity of the or-
bits, both in Ferrers bars [50] as well as in PERLAS potentials [40].

5. Results

5.1. Complex unstable regions in Ferrers bars

We have studied the chaoticity in the neighbourhood of com-
plex unstable periodic orbits belonging to the family x1v1 [37]
in two energy regions of our Ferrers bars model. The orbits of
this family are important, because they act as building blocks
for the peanut-shaped bulges in the central regions of barred
galaxies [39]. In the first case we studied, the complex unstable
region is found between a S → ∆ transition at EJ ≈ −0.3028 and
a ∆ → S transition at EJ ≈ −0.293. At the critical EJ values, there
is a sign change of ∆, being ∆ < 0 in the complex unstable region.
In Fig. 1 we give the variation of ∆ in the −0.304 ≤ EJ ≤ −0.291
interval.

The quantity ∆ (Eq. (4)) refers to the periodic orbit itself.
In order to find out whether, and how, it is associated with
4

Fig. 1. Ferrers bar: The variation of ∆ (Eq. (4)) for the x1v1 family of periodic
orbits in the −0.304 ≤ EJ ≤ −0.291 region. The heavy dots correspond to
calculated periodic orbits. Those with ∆ < 0 are complex unstable.

the phase space structure in the neighbourhood of x1v1, we
perturbed the initial conditions of the orbits of this family at
different EJ . We first investigated orbits with initial conditions
those of the periodic orbit, with one of the coordinates perturbed
by 10% of its value. We consider this as a reasonable perturbation
of a periodic orbit for finding non-periodic orbits that could
potentially participate in the reinforcement of the peanut-shaped
bulge. In particular, at each EJ , we calculated first the GALI2
index of an orbit with the initial conditions of x1v1, perturbed
in the x-direction by 0.1x0(x1v1) and then the GALI2 index of
an orbit with the initial conditions of x1v1 perturbed in the z-
direction by 0.1z0(x1v1). The evolution of GALI2 with EJ for orbits
in the −0.3073 ≦ EJ ≦ −0.2923 interval is given in Fig. 2. The
left column refers to the orbits with the x1v1 initial conditions
perturbed in the x-direction, while in the right column to the
orbits perturbed in the z-direction. The EJ of each orbit is given
in the lower left corner of the panels.

At EJ = −0.3073, the representative of x1v1 is stable and the
perturbed by 10% in the x- and z-directions nearby orbits (left
and right panels in Fig. 2a) are regular, apparently belonging to
a quasi-periodic orbit trapped around it. The orbits in Fig. 2b are
at an EJ just beyond the S → ∆ transition, namely EJ = −0.3023,
where x1v1 is already complex unstable. However, GALI2 hardly
ndicates a chaotic orbit. Contrarily, its variation points to a regu-
ar one. The quasi-regular behaviour of orbits close to complex
nstable periodic orbits beyond, but close to, the critical EJ at
hich the S → ∆ transition occurs, has been formerly noticed
y Patsis and Zachilas [13] and Katsanikas et al. [15]. Close to the
aximum |∆|, at EJ = −0.2973, the GALI2 index of the perturbed
rbit identifies a chaotic behaviour as it becomes practically zero,
eaching values at the order of computational accuracy, i.e. ≈

0−16 (Fig. 2c). Interesting is that the same amount of pertur-
ation at EJ = −0.2923, when x1v1 is again stable, gives again
haotic orbits, as the variation of the GALI2 indices show. This
appens because this perturbation brings the initial conditions of
he perturbed orbit, beyond the volume occupied by the invariant
ori around the stable x1v1 at this EJ .

To the same conclusions leads also the study of the phase-
pace structure. For the visualization of the distribution of the
x, z, px, pz) consequents in the four-dimensional (4D) space, we
use in Fig. 4, and in subsequent similar figures in the paper,
the method proposed by Patsis and Zachilas [13]. Namely, we
consider a 3D projection of the orbit and we rotate it, by means of
an appropriate software package, in order to understand whether
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arameters of the PERLAS potential. The upper row refers to the spiral part, while the two lower rows give the values of all parameters of the axisymmetric
omponents (see text).
Spiral part

Galaxy type Locus Arms number Pitch angle i◦ µ = MSP/MD Scale length (kpc) Ωp (km/s/kpc)
Sc Logarithmic 2 25◦ 0.04 3.7 −20

Axisymmetric components

MD/MH MS/MD Maximum of rotation velocity (kms−1) MD(1010M⊙) MS (1010M⊙) MH (1011M⊙) Disc scale length (kpc)
0.1 0.2 170 5.10 1.02 4.85 3.7

ϵs (kpc) A (kpc) B (kpc) aH (kpc)
1 5.32 0.25 12
Fig. 2. Ferrers bar: The GALI2 indices of orbits in the first S → ∆ → S transition, for which we have calculated ∆ in Fig. 1. In the left column the orbits have x1v1
nitial conditions perturbed in the x-direction by 10% of x0 , while in the right column the orbits are again x1v1, but perturbed this time in the z-direction by 10%
f z0 (see text). In (a) and (d) the corresponding periodic orbit is stable (S), while in (b) and (c) complex unstable (∆). In (d), the perturbed orbit close to a stable
1v1 has a chaotic behaviour. The integration time corresponds to 5 Gyr.
ts consequents are lying on a specific surface, or if they are scat-
ered in the 3D space. Then, we colour the consequents according
o the value of the fourth coordinate, using a colour palette. If
he consequents lie on a surface, the colours allow us to discern
etween a smooth variation of the shades on this surface, or if
e have mixing of colours. This method led to the association
f specific structures in the neighbourhood of a periodic orbit, in
he 4D space of section, with stability, as well as with each kind
f instability (for details see [15,51,52]).
The orbits in Fig. 4 correspond to the four orbits in the left

olumn of Fig. 2. The three spatial coordinates used for the pre-
entation are (x, z, pz), while the colour of the points is defined
by the value of their px coordinate, according to the palette given
on the right hand side of each panel. The integration time of the
orbits depicted in Fig. 4 is much longer than the 5 Gyr period,
we used in the calculation of the GALI2 indices, since we want to
have a clear view of the formed structures. Thus, we continued
integrating the orbits even for times beyond the realistic limits
of the physical system.

In Fig. 4a, at EJ = −0.3073, x1v1 is stable and the consequents
of the plotted non-periodic orbit form a toroidal structure with a
smooth colour variation on its surface, according to the palette
given at the right hand side of the panel. Such a structure in
the 4D surface of section, points to a quasi-periodic orbit trapped
around a stable periodic orbit [51]. In Fig. 4b, at EJ = −0.3023,
e are beyond the S → ∆ transition and x1v1 is now complex
nstable. Nevertheless, the consequents of the orbit form again
5

in the (x, z, pz) projection a toroidal, albeit more complicated,
structure than the one depicted in Fig. 4a. It has also a hole at
the centre, which is not discernible in Fig. 4b, because we use
the same point of view for all four panels in Fig. 4. However, it
can be observed e.g. in the (x, px) projection. This implies that the
orbit with initial conditions those of the periodic orbit, perturbed
in the x-direction by 0.1x0(x1v1) may have reached tori around
another, stable, periodic orbit, existing in this phase space region.
The internal architecture of structures in phase space around
complex unstable periodic orbits in Poincaré cross sections and
their gradual deformation as one parameter of the model, in
our case EJ , varies, has been investigated in several cases in the
past [15,18,25]. For the needs of the present study, it is evident
that in Fig. 4c, when we have reached EJ = −0.2973, close to
the maximum |∆| of the complex unstable region, the points of
the perturbed x1v1, non-periodic, orbit appear scattered and their
colours mixed. This indicates a chaotic orbit, as also its GALI2
suggests (Fig. 2c). Finally, if we consider an orbit at EJ = −0.2923,
beyond the ∆ → S transition, where x1v1 is again stable and we
perturb the periodic orbit by 0.1x0(x1v1) in the x-direction, as
in all previous cases of Fig. 2, we encounter a chaotic behaviour
(Fig. 4d).

It is obvious that, at least in this case, the regular or chaotic
character in the vicinity of the periodic orbit, at the level of
a perturbation of 10% of just one of the four initial conditions
of it, is not associated with the value of the quantity ∆. Even
more, in some cases like the one presented in Fig. 2d and Fig. 4d,
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Fig. 3. Ferrers bar: Poincaré sections of orbits close to x1v1 periodic orbits at EJ = −0.3073 (a), −0.3023 (b), −0.2973 (c) and −0.2923 (d). All of them have initial
onditions of x1v1 perturbed in the x-direction by 0.1x0(x1v1). The x1v1 family at the corresponding energies is stable in (a) and (d) and complex unstable in (b)
nd (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Ferrers bar: The first few hundreds of the consequents in the Poincaré sections of two orbits in the immediate neighbourhood of complex unstable x1v1
eriodic orbits, to which we have applied just a tiny perturbation, of the order of 10−9 in the x coordinate. In (a) EJ = −0.3023, as in Fig. 4b and in (b) EJ =

0.2973, as in Fig. 4c. . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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he orbit is not affected at all by the presence of the stable
eriodic orbit x1v1. Apart from the degree of complexity of the 3D
rojections of the regular structures around a stable (Fig. 4a) and
complex unstable (Fig. 4b) periodic orbit, the main difference

n the structure of phase space between the two cases is found
n the immediate neighbourhood of the periodic orbit, i.e. within
radius r around it, as r → 0. Around a stable periodic orbit we
lways find toroidal structures, while for tiny perturbations of the
nitial conditions of a complex unstable one, the consequents drift
way from it without building a hole. In the case of the complex
nstable periodic orbit at EJ = −0.3023, at which the regular
tructure of Fig. 4b also exists, a perturbation of 10−9 of its x
oordinate leads to an orbit with the Poincaré cross section we
resent in Fig. 4a. A spiral pattern around the initial conditions
f the periodic orbit, like those encountered in previous stud-
es [15,18,25], is discernible for the first 350 consequents (Fig. 4a).
hen, gradually, a regular structure is formed with increasing in-
egration time. Contrarily, around the complex unstable periodic
rbit with EJ = −0.2973, in the case of the orbit in Fig. 4c, we do
ot observe a spiral pattern even for tiny perturbations. In Fig. 4b
e give the first 200 consequents of such an orbit. We can only
bserve that the consequents depart from the periodic orbit along
ertain directions.
Beyond the ∆ → S transition, in order to find regular orbits

lose to the now stable x1v1, i.e. quasi-periodic orbits trapped
round it at EJ = −0.2923, we have to reduce the perturbation
pplied to the x initial condition, to 0.02x (x1v1). The toroidal
0 0

6

tructure we find in 4D has a hole, evident in the (x, px) pro-
ection. If we go back to the complex unstable region and we
onsider a complex unstable periodic orbit at EJ = −0.2938,
here ∆ is about the same as ∆ at EJ = −0.3023 (Fig. 1), we
o not find similar phase structures around the two complex
nstable periodic orbits. In the smaller energy (EJ = −0.3023)

we have encountered the orbit presented in Fig. 4b, with the
GALI2 shown in Fig. 2b by perturbing the x coordinate by 10%. In
the larger energy (EJ = −0.2938), by applying the same relative
perturbation we find chaos. In this case, even if we reduce the
perturbation in the x-direction to 0.001x0(x1v1), we find chaotic
orbits. There is no symmetry in the phase space structure in
the cases of the two periodic orbits with similar ∆ (Eq. (4))
values. This is better realized close to the transition points (S
→ ∆ and ∆ → S), where we observe that around the orbit
with the larger EJ we find more chaos. We also find that beyond
the ∆ → S transition the volume of regular orbits around the
stable periodic orbits is reduced. In most cases, this asymmetry
reflects the different landscapes we encounter in the phase space
region around the periodic orbits of a family at different EJ . Thus,
by applying similar perturbations at different EJ we may enter
a zone of influence of a stable periodic orbit or a chaotic sea.
Nevertheless, within a time of interest for the specific physical
problem, i.e. for 5 Gyr, orbits with initial conditions deviating
from those of the complex unstable x1v1 by 0.05x0(x1v1) or
0.05z0(x1v1) are to a large degree bar-supporting.

The second ∆ region in this model, is found for −0.2673 ⪅
E ⪅ −0.2328, where we have again a S → ∆ → S transition.
J
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Fig. 5. Ferrers bar: Variation of ∆ (Eq. (4)) for the x1v1 family of periodic orbits
in the −0.275 ≤ EJ ≤ −0.23 region. The heavy dots correspond to calculated
eriodic orbits. Those with ∆ < 0 are complex unstable.

his time, the complex unstable region extends in a broader EJ
ange and the maximum |∆| in it is much larger (Fig. 5). For
rbits at these energies the dynamical time scales are large and
o the same physical time correspond much less consequents.
erturbations of the stable orbits of the x1v1 family of the order
f 0.1x0(x1v1) or 0.1z0(x1v1) in the x- or z-direction respectively,
ring always the initial conditions in chaotic regions of phase
pace. In that sense, before the second S → ∆ transition of x1v1,
t EJ ≈ −0.2673, we enter chaotic seas by applying relatively
maller perturbations than to the initial conditions of the stable
eriodic orbits of the family before the first S → ∆ transition
f x1v1, at EJ ≈ −0.3028. By reducing the perturbations to
.05x0(x1v1), or 0.05z0(x1v1), we find regular, i.e. quasi-periodic,
rbits around stable x1v1 for EJ < −0.2713. Then, as we approach
he critical EJ at ≈ −0.2673, the perturbed by 5% orbits become
haotic, first along the z direction, while even closer to it we have
o reduce the perturbation even more in order to find close to the
eriodic orbits regular structures in phase space. In Fig. 6 we give
he perturbed by 0.05x0(x1v1) (panels a to d) and 0.05z0(x1v1)
panels e to h) orbits, for EJ = −0.27134. The perturbed in the
-direction orbit has a typical quasi-periodic morphology as its
x, y), (x, z) and (y, z) projections, in Fig. 6a, b and c respectively,
how. The regular nature of the orbit is in agreement with the
ariation of its GALI2 index in Fig. 6d. Contrarily, the orbit per-
urbed in the z-direction (Fig. 6e,f,g) is chaotic. The GALI2 index
Fig. 6h) shows that after an initial sticky phase, the orbit has a

haotic behaviour. In order to find regular orbits when we perturb

7

x1v1 in z at this and larger EJ , before the S → ∆ transition,
we have to impose perturbations of the order of 10−3z0(x1v1) or
maller.
As we approach the critical EJ , where we have the S → ∆

ransition, the volume of phase space with regular orbits around
stable x1v1, shrinks. In parallel, there is an evolution of the
orphology of tori structures, e.g. like the one given in Fig. 4a,

owards a disky configuration. Nevertheless, we find a hole in the
entre of these structures. For example, if we perturb the initial
onditions of a stable x1v1 orbit very close to the ∆ region, at
J = −0.26753617, by 0.001x0(x1v1), we find the orbit depicted
n Fig. 7. We give the (x, px) and (x, z) projections, in Fig. 7a and
Fig. 7b respectively, with the consequents coloured according to
their pz values.

Beyond the transition, in the immediate neighbourhood of the
x1v1 orbits, which are now complex unstable, we encounter the
known arrangement of the consequents in a spiral lay out [15,18,
25], as in the case for EJ = −0.26743617, which we present in
Fig. 8. In Fig. 8a the x1v1 orbit is perturbed by 0.001x0(x1v1).
We observe the first 120 consequents, which are organized in a
multi-spiral pattern with smooth colour variation along its arms.
In this case, we give the (x, pz) projection, in which the points
are coloured according to the value of their px coordinate. If we
continue integrating the orbit, the consequents will build a cloud
of points with mixed colours, namely the orbit will behave in
a chaotic way. If we consider a tiny perturbation 10−8x0(x1v1),
we find the corresponding representation of the Poincaré surface
of section, which is given in Fig. 8b. The organization of the
consequents in the depicted multi-spiral pattern lasts for about
1800 intersections, the 1600 of which are marked with black dots.
This orbit, for larger integration times behaves also as a chaotic
one.

We underline that in both cases the ‘‘regular’’ period of the
orbits is much longer than the 5 Gyr time interval we are inter-
ested in, for finding bar-supporting orbits. However, as regards
the properties of the dynamical system we study, we remark
that the transition to chaos is more abrupt in the second than
in the first case of the S → ∆ transitions we discussed. In neither
case presented in Fig. 8 the long time integration results to the
formation of invariant structures around the complex unstable
periodic orbit, such as those encountered in [20] or [15]. Having
orbits, which behave initially as regular and later as chaotic, we
can characterize them as sticky [26]. For EJ ’s away from the
critical one, at which we have the second S → ∆ transition, we
can hardly trace a spiral pattern in the surfaces of section of orbits
close to x1v1, even if we apply very small perturbations.

The determination of the volume of phase space around a
complex unstable periodic orbit, where we can find structure-
supporting orbits, is a heavy task. Given that even small perturba-
tions may well bring the initial conditions of the perturbed orbit
Fig. 6. Ferrers bar: From (a) to (c) we give the (x, y), (x, z) and (y, z) projections of an x1v1 orbit with EJ = −0.27134, perturbed by 0.05x0(x1v1) in the x coordinate.
They point to a quasi-periodic orbit trapped around the x1v1 periodic orbit, as its GALI2 variation over a 5 Gyr period indicates in (d). (e) to (g): The corresponding
projections for the x1v1 orbit perturbed by 0.05z0(x1v1) in the z coordinate. The orbit behaves in a chaotic way, after an initial sticky phase, as its GALI2 variation
in (h) indicates.
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Fig. 7. Ferrers bar: The (x, px) (a) and (x, z) (b) projections of the orbit with initial conditions those of the stable x1v1 at EJ = −0.26753617, perturbed by
.001x0(x1v1), form a very thin toroidal-disky, morphology. The consequents are coloured according to their pz values. The energy of the orbit is very close to the S

→ ∆ transition. For long integration times, all holes but the central in (a) are eventually filled. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 8. Ferrers bar: Perturbed x1v1 orbits at EJ = −0.26743617, just after the S → ∆ transition. (a) An orbit perturbed by 0.001x0(x1v1). (b) An orbit perturbed
y 10−8x0(x1v1). In (a) there are 120 consequents plotted, while in (b) 1800, the first 1600 of which are marked with black dots. For larger integration times both
rbits become chaotic. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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o zones of influence of other orbital families, not necessarily sim-
le periodic, it is not always clear to which degree the presence of
complex unstable periodic orbit is associated with the level of
haoticity of a nearby orbit. This is also indicated by the variation
f its GALI2 index.
For instance, in Fig. 9 we consider orbits in the neighbour-

ood of seven complex unstable periodic orbits in the EJ interval
0.275 ⪅ EJ ⪅ −0.23 (Fig. 5) with initial conditions close

to those of x1v1, but with x0 = 1.05x0(x1v1) or with z0 =

.05z0(x1v1), and we plot the variation of their GALI2 indicators
within a 5 Gyr period. The panels on the left hand side correspond
to the orbits perturbed by ∆x, while on the right hand side
to the orbits perturbed by ∆z. The Jacobi constants and the ∆

value of the corresponding complex unstable x1v1 periodic orbit
are: In (a) and (b) EJ = −0.26534465 and ∆ ≈ −0.083, in
(c) and (d) −0.25484465 and −0.951 respectively, in (e) and
(f) −0.25334465 and −1.108, in (g) and (h) −0.24584465 and
−1.557, close to the largest |∆|, in (i) and (j) −0.23984465 and
1.196, in (k) and (l) −0.23684465 and −0.786, and finally in

m) and (n) −0.23384465 and −0.276.
In the left column of Fig. 9, we observe that there is always

n almost horizontal part of the curves with the GALI2 variation,
hich appears at the left side of each panel. This part corresponds
o times of the order of 1 Gyr or less. For the dynamical time
cales of these orbits, at the EJ we consider them, within this
eriod we have only a few consequents, less than 20, which
epart from the periodic orbit forming in general a spiral pattern,
efore they start behaving in a chaotic way. In panel (g), where

e have a perturbed x1v1 orbit in the x-direction, we are closest

8

o the maximum |∆| of the region we study. We observe that
the horizontal branch of its GALI2 variation is, together with the
one in panel (e), one of the shortest. However, for larger times in
Fig. 9g, there is a second plateau, before the curve starts decreas-
ing monotonically. Such variations make it even more difficult to
link the values of ∆ (Eq. (4)) with the degree of chaoticity to the
phase space around a complex unstable periodic orbit.

A characteristic example of a complicated landscape of the
phase space in the neighbourhood of a complex unstable periodic
orbit is given in Fig. 10. We present the (x, z, px, pz) Poincaré
section of an orbit very close to the ∆ → S transition, at the right
hand side of the ∆ region in Fig. 5, at EJ = −0.23283617, where
x1v1 has ∆ = −0.092. We consider the periodic orbit and apply a
tiny perturbation in its initial x0 condition, namely 10−8x0(x1v1).
he first 226 consequents of the orbit form a usual spiral pattern
central region of Fig. 10a), as they deviate away from the com-
lex unstable x1v1. However, the breaking of the spiral pattern
s not followed by a diffusion in a chaotic domain, but by the
ticking of the orbit in a weakly chaotic zone surrounding a chain
f stability islands. In Fig. 10a, we give the first 1200 consequents
n the (x, pz) projection, coloured according to their px values. The
irst 226, building a 3-armed spiral pattern, are emphasized with
lack points. In Fig. 10b we give the first 1600 consequents and
e observe how they diffuse in a broader chaotic sea. In Fig. 10c
e present again the first 1200 consequents, but using the 3D
x, pz, z) projection, also coloured according to their px values.
We realize that the consequents are practically on a warped-disky
surface, reminiscent of the shape of the disky confined tori [15].

We reach similar conclusions by studying perturbations in the

z-direction. In Fig. 9, the right hand column with the GALI2 indices
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Fig. 9. Ferrers bar: GALI2 variation of orbits in the neighbourhood of complex unstable x1v1 orbits, perturbed by 0.05x0(x1v1) (left column) and by 0.05z0(x1v1)
(right column). The variation of ∆ of the corresponding periodic orbits can be deduced from Fig. 5 (the EJ ’s are given in the text). The panels closest to the maximum
∆| are in the fourth row, i.e. in panels (g) and (h). In general the GALI2 variation can be affected by the presence of other nearby families existing in phase space
lose to the periodic orbit.
efers to orbits with initial conditions close to the periodic orbits,
erturbed in the z direction by 0.05z0(x1v1). This time, from
op to bottom, the horizontal part of the GALI2 curves initially
s reduced with increasing |∆|. However, in panel (h), close to
he x1v1 orbit with the maximum |∆|, the perturbed by 5% in
he z-direction orbit shows a more extended horizontal part, as
oes the orbit in panel (l). Such variations are again due to the
resence of the orbits of other families in the neighbourhood of
he periodic orbit we study.

Restoration of stability, for EJ > −0.2328, has also a gradual
haracter. Just beyond the ∆ → S transition, the ‘‘range of influ-
nce’’ of the stable periodic orbit is small. For EJ = −0.23234, the
olerance of the perturbation of the x0 initial condition, so that we
ind quasi-periodic orbits on tori with a smooth colour variation
n them, is just ∆x ≈ 0.0015x0(x1v1). This orbit can be seen
n Fig. 11a. For larger perturbations of x0 the orbits are chaotic,
ith an initial sticky phase appearing up to a perturbation of
x ≈ 0.05x0(x1v1). In Fig. 11b, we give the first 600 consequents
f the orbit, for which the perturbation of x1v1 is 0.002x0(x1v1).
uring this period, the structure of phase space around the stable
eriodic orbit resembles the spiralling observed around a com-
lex unstable one. For larger integration time a chaotic cloud
s formed, similar to those depicted in Fig. 4c,d. Away from the
ransition to stability region, the phase space structure around
he stable x1v1 orbits is characterized by stability islands of
9

considerable sizes. For example, for EJ = −0.22934, if we perturb
again the periodic orbit in x, we find tori of quasi-periodic orbits
for perturbations up to about 0.5x0(x1v1).

5.2. Complex unstable regions in PERLAS spirals

In the PERLAS case the perturbative term is in the form of a
spiral potential, in which the mass of the spiral (Ms), over the
mass of the disc (Md) is Ms/Md = 0.04 (model M4 in [40]). The
family of x1v1 periodic orbits is introduced in the same way as
in the rotating Ferrers bar, namely as a bifurcation of the central
family x1, at the vertical 2:1 resonance. The projections of the
orbits of this family on the equatorial plane are elliptical-like.
However, in the PERLAS potential, they are not aligned along
an axis as in the case of a bar. Their orientation changes in
such a way, as to support a bisymmetric set of logarithmic spiral
arms [40].

In the specific PERLAS model we study, the evolution of the
stability of this family with EJ is also qualitative similar with
that of the Ferrers bar we studied in the previous Section 5.1.
Namely, we find two S → ∆ → S transitions, for −1354.3 ⪅
EJ ⪅ −1345.8 and −1208.7 ⪅ EJ ⪅ −1131.6, in the units we use
for this model (see figure 6 in [40]). Taking into account that the
centre of the system is at EJ ≈ −1580 and the Lagrangian point
L4 at corotation, at E ≈ −1038, the first complex unstable region
J
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Fig. 10. Ferrers bar: An orbit close to the x1v1 complex unstable periodic orbit, at EJ = −0.23283617, near the ∆ → S transition. The initial conditions of the orbit
iffer from those of the periodic one by 10−8x0 in the x coordinate. In (a) and (b) we give the (x, pz ) projection, with the consequents coloured according to their

px values, while in (c) the (x, pz , z) projection, coloured again according to the px values. In (a) and (c) we consider 1200 intersections with the y = 0 plane, while
in (b) 1600. The orbit drifts to a chaotic sea after forming first a spiral pattern and then remaining sticky in a zone around the periodic orbit. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Ferrers bar: (a) The tiny torus of the quasi-periodic orbit with initial conditions of x1v1, perturbed by 0.0015x0(x1v1), for EJ = −0.23234. We use the
x, pz , z) spatial projection and px for giving colour to the consequents. (b) The first 600 consequents of another orbit, this time with a perturbation 0.002x0(x1v1),
t the same EJ , in the (x, px) projection, coloured according to their pz value. They form a structure reminiscent of the spirals close to complex unstable periodic
rbits. For longer integration times this orbit diffuses in the available phase space. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)
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s tiny in the energy range in which the families of the x1-tree
xtend. The quantity ∆ (Eq. (4)) in −1354.3 ⪅ EJ ⪅ −1345.8 has a
ariation similar to those in the complex unstable regions we pre-
ented in Figs. 1 and 5 for the Ferrers bar model, with a maximum
∆| ≈ 0.029. In a 5 Gyr period, all orbits with initial conditions
hose of the complex unstable periodic orbits perturbed in the
-direction by 0.1x0(x1v1) or in the z-direction by 0.1z0(x1v1)
ehave apparently as regular and support the imposed 2-armed
piral pattern. We calculated their GALI2 indices and we found
ariations indicating a regular behaviour.
The second complex unstable region (−1208.7 ⪅ EJ ⪅

1131.6) is quite broad and the variation of ∆ (Eq. (4)), which is
gain U-shaped as in all previous cases, has a minimum ∆ = −4.9
t EJ ≈ −1165. Let us first describe the evolution of structures in
hase space close to the S → ∆ transition point at EJ = −1208.7.
e study it by applying radial perturbations to the x coordinate
f the initial conditions of the x1v1 periodic orbit. For the sake of
 i

10
revity in the case of the spiral PERLAS potential we will use for
he presentation of our results mainly radial perturbations. We
o so, because the problem of the orbital support of a galactic
rand-design spiral pattern should be considered in a first ap-
roximation as a problem of finding perturbed orbits practically
n the equatorial plane of the model.
Close to the transition point, at EJ = −1210.228, x1v1 is

till stable. However, we find again that the extent of the region
ithin which we find quasi-periodic orbits around x1v1, has been
onsiderably reduced. Already a perturbation by 0.03x0(x1v1)
orresponds to a chaotic orbit, which visits all available phase
pace if integrated for long time, as we can see in Fig. 12a. The
ocation of x1v1 in Fig. 12a is indicated with a heavy black dot at
he left part of the figure. It is located at negative x, due to the way
e define the Poincaré section in a clockwise rotating system.
or a perturbation 0.01x0(x1v1) we find a regular orbit, which

s confined in a thin, warped, disky structure, which is not filled
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Fig. 12. PERLAS potential: The cross sections of three orbits in the neighbourhood of the stable x1v1 periodic orbit at EJ = −1210.228, just before the S → ∆

ransition. All of them are perturbations of the periodic orbit in the x coordinate. In (a) by x = 0.03x0(x1v1), in (b) by 0.01x0(x1v1) and in (c) by 0.001x0(x1v1).
he area occupied by regular orbits around x1v1 is small. Black dots in (a) and (c) point to the location of the periodic orbit. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. PERLAS potential: The (x, px) projection of the cross section of an orbit
in the neighbourhood of the complex unstable x1v1 with EJ = −1208.228. The
onsequents are coloured according to their pz values. The orbit has the initial
onditions of x1v1 perturbed by 0.001x0(x1v1). A spiral pattern formed by the
irst 67 consequents is discernible in the middle of the figure. (For interpretation
f the references to colour in this figure legend, the reader is referred to the
eb version of this article.)

ven after 104 intersections (Fig. 12b). Only for perturbations of
he order of 0.001x0(x1v1), we encounter the known, character-
stic structure of a torus in 3D projections with smooth colour
ariation in the fourth coordinate (Fig. 12c).
At a slightly larger EJ , for EJ = −1208.228, the periodic orbit

as become complex unstable, still being close to the S → ∆

transition. We find that only tiny perturbations of the x0 initial
condition of the periodic orbit result to the formation of spiral
patterns around the periodic orbit in phase space [15,18,25]. Nev-
ertheless, even in these cases, the consequents eventually diffuse
in phase space. A characteristic example is given in Fig. 13, where
we present the cross section of the orbit with initial conditions
those of the periodic orbit x1v1 perturbed by 0.001x0(x1v1).

As EJ increases, the phase space close to the complex unstable
x1v1 periodic orbits becomes practically chaotic. The number
of consequents arranged in a spiral pattern when we integrate
orbits close to the periodic one, decreases. We can say that most
complex unstable periodic orbits in the range −1208.7 < EJ

−1131.6 are found embedded in chaotic seas. The situation
hanges again as we approach the ∆ → S transition, for EJ

−1131.6. For example, by considering perturbations 0.001x0
to the initial conditions of x1v1, we find invariant structures
around the complex unstable periodic orbits for EJ ⪆ −1134.
Their appearance is preceded by the presence of consequences
confined for a few hundreds of intersections in an almost disky
structure, before they eventually diffuse in phase space. Very
close to the transition point, at EJ = −1132.228, we find in
the neighbourhood of the periodic orbit the known wavy, disky
11
structure in the 3D projection of the space of section, with a
smooth colour variation across it, representing the fourth dimen-
sion [15]. A difference with previous cases is that the underlying
spiral pattern followed by the consequents as they fill the area
of the disky structure is one-armed. This is described inFig. 14
for the x1v1 orbit perturbed by 0.001x0(x1v1). The cross section
is given in the (x, px) projection, while the colour of the points
corresponds to their pz values. The consequents follow first an
one-armed spiral from the centre to the outer boundary of the
disky structure and then continue spiralling inwards. This cycle is
repeated until the surface of the disky structure is covered with
points. We show this by plotting the first 25 consequents of the
orbit in Fig. 14a with heavy black dots and connecting them with
straight lines, and then in Fig. 14b, by plotting with red dots and
lines the consequents from the 40th to the 61st one. We indicate
with numbers some consequents in both panels, in order to
facilitate understanding that the points follow spiral patterns. The
black consequents follow a spiral outwards, while the red ones a
spiral inwards. Following these first 61 successive intersections
of the orbit with the space of section, one can appreciate the
pattern followed by the consequents in forming the underlying
disky structure.

Also in this model, the phase space structure in the neighbour-
hood of the orbits with the same ∆ values in the descending and
ascending parts of the (∆, EJ ) curve is not the same. We can draw
only the general conclusion that regular structures are found only
close to the stability transition points.

The evolution of the phase space beyond the ∆ → S transi-
tion has also a gradual character. Just beyond the critical value
(EJ ≈ −1131.6), at EJ = −1131.228, orbits with ∆x ≧ 0.1x0
perturbations of the initial conditions of x1v1 are chaotic. Only
for smaller perturbations of the x initial condition we find quasi-
periodic orbits. The extent of the zone occupied by regular orbits
around stable x1v1 orbits increases, as in the cases we studied in
the Ferrers bar potential, for larger EJ ’s.

5.2.1. Practical implications
Besides the knowledge of the long-term evolution of the phase

space structure in the neighbourhood of complex unstable pe-
riodic orbits, of special importance for Galactic Dynamics is the
behaviour of the orbits during the time within which a spiral
pattern is expected to survive. An upper limit for this can be
considered a 5 Gyr period [53,54]. During this time interval, all
orbits in the first complex unstable region of x1v1, for −1354.3 ⪅
EJ ⪅ −1345.8, with initial conditions those of the periodic orbit
perturbed by 0.1x0(x1v1), can hardly be distinguished from quasi-
periodic orbits. During the same time interval, the perturbed in
the same way x1v1 orbits in the second complex unstable region,
−1208.7 ⪅ EJ ⪅ −1131.6, evolve as shown in Fig. 15. There
we present 6 orbits, the EJ of which and the ∆ values of the
corresponding orbits successively are: E = −1209.228 (∆ =
J
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Fig. 14. PERLAS potential: The disky structure with the smooth colour variation along its surface, formed by the consequents of the perturbed by ∆x = 0.001x0
1v1 orbit, at EJ = −1132.228. We give the (x, px) projection and we colour the points according to their pz values (colour bar at the right hand side of the panels).
he first 25 consequents are plotted in (a) with black dots and are connected with black lines and the consequents from the 40th to the 61st one are plotted with
ed dots and lines in (b). The disky structure is formed by the consequents following successive cycles of spiralling outwards as in (a) and then spiralling inwards
s in (b). We indicate with numbers, and arrows pointing to them, several consequents in both panels in order to understand the out- and inwards spiralling of the
oints. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. PERLAS potential: Perturbed by 10% in the x coordinate x1v1 orbits. For each one of them we present the three projections (x, y), (x, z), (y, z) and the
volution of GALI2 during a 5 Gyr period. They are at EJ −1209.228 (a), −1208.228 (b), −1191.228 (c), −1166.228 (d), −1132.228 (e) and −1131.228 (f). The
orresponding periodic orbits in (a) and (f) are stable, while in all other cases complex unstable. All depicted orbits reinforce at some degree the spiral pattern.
12
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.155) (a), −1208.228 (∆ = −0.006) (b), −1191.228 (∆ =

2.821) (c), −1166.228 (∆ = −4.858) (d), −1132.228 (∆ =

.131) (e) and −1131.228 (∆ = 0.157) (f). For each one of them
we give the three projections, (x, y), (x, z) and (y, z) and below
them the evolution of their GALI2 index during a 5 Gyr period.

The periodic orbits existing at the EJ ’s of the non-periodic
orbits depicted in Fig. 15a and f are stable, while all other cases
(Fig. 15b,c,d,e) are complex unstable. Both the morphology and
the variation of the GALI2 indicators of the two orbits in the
neighbourhood of the stable periodic orbits indicate a sticky
behaviour. We also observe that the orbits close to the complex
unstable periodic ones never become strongly chaotic. However,
although the perturbation of one of the initial conditions of the
periodic orbit by 10% leads to realistic initial conditions of an orbit
potentially supporting the spiral structure, it is not necessarily
associated with the immediate environment of the complex un-
stable periodic orbit. Such a perturbed orbit may belong to an
invariant torus around another, stable, periodic orbit existing in
the region, or it may become an orbit trapped in a nearby sticky
zone. This means that we encounter a situation similar to the
perturbed periodic orbits of the Ferrers bar.

For example, the consequents of the orbit in Fig. 15b, in its
(x, px) projection of the Poincaré surface of section during the
5 Gyr period, are stuck in the region delimited by the heavy black
dots in Fig. 16. These latter, are the consequents of the orbit
during the time interval 3.3 to 4.5 Gyr, which appear stuck along
this ring. As the variation of the GALI2 of the orbit in Fig. 15b
indicates, the orbit is weakly chaotic, but it does not diffuse in
phase space. This secures for this period the confinement of the
orbit in the (x, y) projection on the equatorial plane in an annular
region, which retains the orientation of the x1v1 periodic orbit
with the same EJ . This is a useful result, since x1v1 participates in
the reinforcement of a bisymmetric, three dimensional, spiral pat-
tern by means of the mechanism of ‘‘precessing ellipses’’ [55], as
shown by Chaves-Velasquez et al. [40]. The importance of orbits,
which remain encapsulated in regions of phase space for signif-
icant time intervals has been underlined in studies by Muzzio
[56,57]. Our analysis leads us to the conclusion that even in the
complex unstable parts of a family there are non-periodic orbits
which may contribute to the reinforcement of the spiral pattern
for considerable time intervals. If we continue integrating the
orbit for longer times we find that it diffuses visiting all available
phase space (Fig. 16). However, this happens for non-realistic
time scales, of the order of several Hubble times.

6. Conclusions

We have investigated the phase space in the neighbourhood of
complex unstable periodic orbits in two galactic type models, that
support structures similar to those observed in disc galaxies. The
models rotate with a constant pattern speed. The first one refers
to the 3D dynamics of a bar, represented by a Ferrers bar, while
the second to a 3D spiral PERLAS potential with two arms. In both
cases we have examined the phase space close to periodic orbits
of x1v1, which is a family introduced in the system as bifurcation
of the central family x1, at its vertical 2:1 resonance. Orbits of this
family are associated with the presence of a peanut, or X-shaped,
bulge in the side-on view of the Ferrers model [16,39] and with
the enhancement of the spiral arms in the PERLAS potential [40].
Our main conclusions are the following:

1. The structure of the phase space in the neighbourhood
of successive orbits of the x1v1 family in both models
presents similar features, as the stability of the family ex-
periences a S → ∆ → S transition with increasing EJ . The
evolution of the phase space structure can be summarized

as follows:

13
Fig. 16. PERLAS potential: The (x, px) projection of the Poincaré surface of
section of the orbit in Fig. 15b. The consequents are coloured according to their
pz coordinate. During a 5 Gyr period the consequents are found confined within
a ring-like structure delimited by the consequents of the orbit during the time
interval 3.3 to 4.5 Gyr. This trapping of the consequents in a specific region of
phase space allows the orbit to be spiral-supporting during this period. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

• Before the S → ∆ transition, the volume of regu-
lar orbits around the stable representatives of x1v1
decreases with increasing EJ . Approaching the critical
point, we have to decrease the perturbations we apply
to one of the four initial conditions in order to find in
the Poincaré spaces of section toroidal surfaces with
smooth colour variation on them. Simultaneously the
tori (as e.g. in Fig. 4a) become flatter, tending to
become disky.

• Just beyond the S → ∆ transition, around the com-
plex unstable periodic orbits we find regular struc-
tures, namely disky confined tori [4,15,20]. There is
an internal structure on them, in the sense that the
consequents cover the surfaces of the confined tori
following specific spiral patterns. The number of the
arms of these spiral patterns varies.

• A next phase in the evolution of the phase space
structure in the neighbourhood of the x1v1 peri-
odic orbits, appears as we depart from the S → ∆
transition point towards larger energies, keeping the
relative perturbation constant. We find then conse-
quents initially building spiral patterns with smooth
colour variation along their arms, which later diffuse
in phase space building clouds of scattered points,
filling the available volume of the phase space, limited
by the surface of zero velocity.

• For the largest part of a ∆ region, integrating orbits
in the immediate neighbourhood of the x1v1 peri-
odic orbits leads to clouds of scattered points in the
Poincaré cross sections. However, in many cases the
orbits remain confined during a significant period
within a certain subset of the 4-dimensional space.
This plays a major role for practical applications.

• Close to the ∆ → S transition the phase space is or-
ganized again, however within small volumes around
the complex unstable periodic orbit. Namely, we en-
counter again disky confined tori.

• Finally, beyond the ∆ → S transition, in the region
where the family is again stable, the restoration of
order has again a gradual character. The radius within
which we find regular orbits around the periodic orbit
increases with E .
J
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2. The shrinking of the volume occupied by regular orbits
around the stable x1v1 periodic orbits and the evolution of
the tori towards a disky morphology as we approach the
critical energy for a S → ∆ transition, has been encoun-
tered in all studied cases. This is the second case we know
that the deformation of a phase space structure close to a
periodic orbit as the energy varies, foretells an impending
change of stability (the first case has been presented by
Patsis and Katsanikas [16] for changes in the topology of
invariant tori before a S → U transition).

3. Within an EJ interval in which the x1v1 family is complex
unstable, orbits in the neighbourhood of periodic orbits
with the same ∆ (Eq. (4)), subject to the same amount
of relative perturbations, do not have the same degree
of chaoticity. In the cases we studied, they appear more
chaotic in the ascending part of the U-type curve of the
(EJ , ∆) diagrams, towards the critical point of the ∆ →

S transition. In that respect, there is no perfect symmetry
in the phase space structures around complex unstable
periodic orbits with the same ∆.

4. We underline the role of the phase space environment
around a periodic orbit for the determination of the be-
haviour of the perturbed orbits. In many cases displace-
ments of the initial conditions of a periodic orbit along a
certain direction, may bring the initial conditions of the
perturbed orbit in zones of influence of other periodic or-
bits (stable or unstable). The variation of the GALI2 indices
may warn us about such cases.

5. In both models, many orbits eventually expressing a
chaotic character are structure-supporting within a 5 Gyr
period. Especially for the spiral PERLAS potential, we con-
clude that even in the larger complex unstable energy
interval, there are orbits relatively close to complex unsta-
ble periodic orbits, which contribute to the reinforcement
of the spiral arms of the model for considerable time
intervals.

6. Supporting further the above conclusion, we note that the
orbits close to the periodic orbits of the small complex
unstable energy intervals in both models, can hardly be
distinguished from regular during a 5 Gyr period.
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